Weak and strong convergence theorems of implicit iteration process on Banach spaces
نویسندگان
چکیده
منابع مشابه
Strong Convergence of Non-Implicit Iteration Process with Errors in Banach Spaces
and Applied Analysis 3 Lemma 1.1 see 21 . let X be a uniformly convex Banach space. Let b and c be two constants with 0 < b < c < 1. Suppose that {tn} is a sequence in b, c . Let {xn} and {yn} be two sequences in X such that lim sup n→∞ ‖xn‖ ≤ d, lim sup n→∞ ∥ yn ∥ ∥ ≤ d, lim n→∞ ∥ tnxn 1 − tn yn ∥ ∥ d 1.8 hold for some d ≥ 0, then limn→∞‖xn − yn‖ 0. Lemma 1.2 see 26 . Let {an}, {bn}, and {cn} ...
متن کاملStrong Convergence of an Implicit Iteration Process for Two Asymptotically Nonexpansive Mappings in Banach Spaces
The purpose of this paper is to introduce an implicit iteration process for approximating common fixed points of two asymptotically nonexpansive mappings and to prove strong convergence theorems in uniformly convex Banach spaces.
متن کاملWeak and Strong Convergence of an Implicit Iteration Process for an Asymptotically Quasi-I-Nonexpansive Mapping in Banach Space
We prove the weak and strong convergence of the implicit iterative process to a common fixed point of an asymptotically quasi-I-nonexpansive mapping T and an asymptotically quasi-nonexpansive mapping I, defined on a nonempty closed convex subset of a Banach space.
متن کاملConvergence theorems of implicit iterates with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces
In this paper, we prove that an implicit iterative process with er-rors converges strongly to a common xed point for a nite family of generalizedasymptotically quasi-nonexpansive mappings on unbounded sets in a uniformlyconvex Banach space. Our results unify, improve and generalize the correspond-ing results of Ud-din and Khan [4], Sun [21], Wittman [23], Xu and Ori [26] andmany others.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fixed Point Theory and Applications
سال: 2011
ISSN: 1687-1812
DOI: 10.1186/1687-1812-2011-96